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a b s t r a c t

The explicit expression for the reference-system entropy within the Weeks–Chandler–Andersen (WCA)
approximation is derived and applied to straightforward calculation of the WCA entropy and internal
energy of liquid alkali metals. It is shown that the procedure used gives the same results as a numerical
differentiation of the Helmholtz free energy but with a smaller computing complexity.
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. Introduction

The Weeks–Chandler–Andersen (WCA) method [1,2] of the
hermodynamic perturbation theory (TPT) [3] is widely used for
he structure and thermodynamics study of different kinds of real
uids [4–12]. A number of works have analyzed accuracy and valid-

ty of the WCA approximation [13–18]. In some special cases, there
re analytical formulas obtained from molecular dynamics simu-
ations for different thermodynamic functions of the WCA fluid
4,11,18–21]. However, the explicit expression for the entropy in
general form has not been used in this approximation up to now

n concrete calculations in particular for liquid metals and their
lloys. It has been calculated numerically as a partial derivative
f the Helmholtz free energy with respect to the temperature at
he constant volume [5,6,10]. Here, we find the expression for the

CA reference-system entropy in the explicit form not exceeding
he frameworks of the original WCA method [1,2] and apply it to
iquid metal thermodynamics calculations.
. WCA method

For the system with a potential energy, U, represented
s the sum of pair interactions only, that in the integral
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form is:

U = 2��

∫ ∞

0

ϕ(r)g(r)r2dr (1)

(where � is the number density; ϕ(r) is the pair interatomic poten-
tial; g(r) is the pair correlation function), the thermodynamic
perturbation theory gives the following separations [3]:

U = U0 + U1, (2)

ϕ(r) = ϕ0(r) + ϕ1(r), (3)

where U0 and ϕ0(r) are the reference-system terms; U1 and ϕ1(r)
are perturbations. Hereafter, all thermodynamic functions will be
written per atom.

The Helmholtz free energy, F, in the first-order TPT expansion
(that denotes the high temperature approximation) is [3]:

F = F0 +
〈

U1
〉

0
, (4)

where ∫ ∞
〈
U1

〉
0

= 2��
0

ϕ1(r)g0(r)r2dr. (5)

The WCA approach is applicable to fluids with a soft repulsive
part of the pair potential and the WCA separation of ϕ(r) is written
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s follows [1]:

0WCA(r) =
{

ϕ(r) − ϕ(rm), r < rm

0, r ≥ rm
, (6)

1WCA(r) =
{

ϕ(rm), r < rm

ϕ(r), r ≥ rm
, (7)

here rm is the position of the first minimum of ϕ(r).
The main approximation in the framework of the WCA approach

s [1]:

0WCA(r) = yHS(r), (8)

here “HS” denotes the hard-sphere system; y(r) is the cavity cor-
elation function:

(r) = g(r)eˇϕ(r). (9)

ere ˇ = 1/(kBT); kB is the Boltzmann constant; T is the temperature.
rom Eqs. (8) and (9),

0WCA(r) = yHS(r)e−ˇϕ0WCA(r). (10)

According to Eq. (9),

HS(r) = gHS(r)eˇϕHS(r), (11)

nd since ϕHS(r) = 0 at r ≥ �, where � is the HS diameter,

HS(r) = gHS(r), r ≥ �. (12)

The Helmholtz free energy of the WCA reference system, F0WCA,
as obtained in Refs. [1,2] using Eq. (10):

0WCA = FHS − 2��kBT

∫ ∞

0

(g0WCA(r) − gHS(r))r2dr, (13)

here FHS = 3kBT/2 − TSHS; S is the entropy.
Eqs. (4), (5), and (13) give the following expression:

WCA = FHS − 2��kBT

∫ ∞

0

(g0WCA(r) − gHS(r))r2dr + 2��

×
∫ ∞

0

ϕ1WCA(r)g0WCA(r)r2dr. (14)

Taking into account Eq. (7) for all r and Eqs. (10), (6), and (12)
or only distances higher than rm, the last integral in Eq. (14) can be
ritten as follows:
∞

0

ϕ1WCA(r)g0WCA(r)r2dr = ϕ(rm)

×
∫ rm

0

g0WCA(r)r2dr +
∫ ∞

rm

ϕ(r)gHS(r)r2dr. (15)

Then add and subtract simultaneously the term
(rm)

∫ rm

0
gHS(r)r2dr to the right-hand side of Eq. (15). The

ubtracted term together with the first term of the right-hand side
f Eq. (15) give:

(rm)

∫ rm

0

g0WCA(r)r2dr − ϕ(rm)

∫ rm

0

gHS(r)r2dr = ϕ(rm)

×
∫ ∞

0

(g0WCA(r) − gHS(r))r2dr. (16)

Due to Eq. (6) and the property of gHS(r) to be equal to zero at

< �, the added term can be transformed as follows:

(rm)

∫ rm

0

gHS(r)r2dr =
∫ rm

�

ϕ(r)gHS(r)r2dr −
∫ rm

�

ϕ0(r)gHS(r)r2dr.

(17)
ica Acta 518 (2011) 9–12

Summarizing the right-hand sides of Eqs. (16) and (17) with
the last term of Eq. (15) leads to transformation of Eq. (14) to the
convenient for the further calculations form:

FWCA = FHS + 2��

[
−kBT

∫ ∞

0

(g0WCA(r) − gHS(r))r2dr

+
∫ ∞

�

ϕ(r)gHS(r)r2dr −
∫ rm

�

ϕ0WCA(r)gHS(r)r2dr + ϕ(rm)

×
∫ ∞

0

(g0WCA(r) − gHS(r))r2dr

]
. (18)

Note that the simplification of the WCA suggested by Ben-Amotz
and Stell [22] gives Eq. (18) without its last term.

The original WCA condition for the �-value defining is [1]:∫ ∞

0

(g0WCA(r) − gHS(r))r2dr = 0. (19)

Due to condition (19), Eq. (18) becomes:

FWCA = FHS + 2��

∫ ∞

�

ϕ(r)gHS(r)r2dr − 2��

∫ rm

�

ϕ0WCA(r)gHS(r)r2d

Another condition for the determination of the HS diameter was
suggested by Lado [23]. However, it leads to the different expres-
sion for FWCA and is not considered in the present work.

Earlier, the entropy and internal energy, E, from Eq. (20) were
being calculated numerically [10]:

SWCA ≡ S0WCA = −
(

∂FWCA

∂T

)
�

, (21)

EWCA = FWCA + TSWCA. (22)

In the next section the explicit expressions for these thermody-
namic functions will be given.

3. Derivation of the expression for the reference-system
WCA entropy

Let us represent the WCA entropy as follows:

S0WCA = SHS + �S0WCA, (23)

where �S0WCA is an additional term aroused due to the difference
between potentials ϕHS(r) and ϕ0WCA(r).

To obtain �S0WCA, we use the procedure analogous to that used
in Ref. [24] for obtaining the entropy of the square-well fluid.
Since the potential energy of the HS system is equal to zero and
therefore the difference between the HS internal energy and the
reference-system internal energy is equal to U0, the well-known
thermodynamic relation,(

∂S

∂T

)
�

= 1
T

(
∂E

∂T

)
�

, (24)

taking into account Eq. (23), can be rewritten as:(
∂(�S0WCA)

∂T

)
�

= 1
T

(
∂U0WCA

∂T

)
�

, (25)

where, in accordance with Eq. (1),

U0WCA = 2��

∫ ∞
ϕ0WCA(r)g0WCA(r)r2dr. (26)
0

Then

�S0WCA =
∫

1
T

(
∂U0WCA

∂T

)
�

dT . (27)
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Table 1
The entropy and internal energy of liquid alkali metals calculated using Eqs. (33)
and (34) at T = 373 K.
N.E. Dubinin et al. / Therm

From Eqs. (26) and (27) using Eq. (10) one obtains:

S0WCA = 2��

kB

[
kB

T

∫ rm

0

ϕ0WCA(r)yHS(r)e−ˇϕ0WCA(r)r2dr + k2
B

×
∫ rm

0

yHS(r)e−ˇϕ0WCA(r)r2dr + Const

]
. (28)

To define unknown constant we use the condition �S0WCA = 0
t ϕ0WCA(r) = ϕHS(r):

onst = −k2
B

∫ rm

�

gHS(r)r2dr. (29)

As a result,

S0WCA = 2��

T

∫ rm

0

ϕ0WCA(r)g0WCA(r)r2dr + 2��kB

∫ rm

0

g0WCA(r)r2dr −
∫ rm

�

gHS(r)r2dr

)

U0WCA

T
+ 2��kB

∫ ∞

0

(g0WCA(r) − gHS(r))r2dr, (30)

nd

WCA ≡ S0WCA = SHS + U0WCA

T
+ 2��kB

∫ ∞

0

(g0WCA(r) − gHS(r))r2dr.

(31)

Then, from Eqs. (18) and (31),

WCA = 3kBT

2
+ U0WCA + 2��

[∫ ∞

�

ϕ(r)gHS(r)r2dr

−
∫ rm

�

ϕ0WCA(r)gHS(r)r2dr + ϕ(rm)

∫ ∞

0

(g0WCA(r) − gHS(r))r2dr

]
.

(32)

Taking into account Eq. (19),

WCA = SHS + U0WCA

T
, (33)

nd

WCA = 3kBT

2
+ U0WCA + 2��

[∫ ∞

�

ϕ(r)gHS(r)r2dr

−
∫ rm

�

ϕ0WCA(r)gHS(r)r2dr

]
. (34)

Equations obtained lead to significant simplification of the
CA-calculation procedure and will be used in the next section for

alculating the entropy and internal energy of liquid alkali metals.

. Calculations for liquid alkali metals

As a rule, to construct an effective pair potential for simple metal
he pseudopotential theory is used (in atomic units (a.u.)):

(r) = z2

r
+ 1

8�2�

∫ ∞

0

F(q)
sin(qr)

qr
q2dq, (35)
here z is the valence and F(q)is the energy–wavenumber charac-
eristic:

(q) = −q2ω2(q)
8��

[(εH(q) − 1)−1 + (1 − f (q))]
−1

, (36)
Na K Rb Cs

S/kB 8.05 9.80 11.18 12.41
E (eV) −6.12 −5.38 −4.98 −4.79

Here ω(q) is the form-factor of the unscreened ion pseudopoten-
tial, ω(r), which is here the Animalu–Heine model pseudopotential
[25] in the local approximation [26] (the corresponding pseudopo-
tential parameters are also listed in Ref. [26]); εH(q) is the Hartree
dielectric function; f(q) is the exchange-correlation function, which
is taken here in the Vashishta–Singwi form [27]. For simple met-
als the additional terms, the electron energy, Ue, and the electron

entropy, Se = zT
(

�kB/kF
)2

(where kF = (3z��2)
1/3

is the Fermi
wave vector), must be added to the right-hand sides of Eqs. (34)
and (33), respectively. The free-electron gas energy is calculated by
us within the Nozieres–Pines approximation [28]. The contribution
SHS obtained from the compressibility equation is used [29].

For concrete calculations, one needs function g0WCA(r) at r < �.
Since ϕHS(r) = ∞ at r < �, the function yHS(r) (Eq. (11)) is not deter-
mined in this region in a general case. At all r, the exact analytical
solution for yHS(r) exists within the Percus–Yevick (PY) [30] approx-
imation only:

yHS−PY(r) =
{

−cHS−PY(r), r < �
gHS−PY(r), r ≥ �

, (37)

where c(r) is the direct correlation function; cHS–PY(r) and gHS–PY(r)
are the analytical Wertheim–Thiele expressions [31,32] being used
in our work.

Results obtained for liquid Na, K, Rb, and Cs at T = 373 K are
listed in Table 1. It is found that the straightforward calculation
suggested gives the same results for the WCA entropy and inter-
nal energy as ones obtained by the numerical differentiation of the
WCA Helmholtz free energy (Eqs. (21) and (22)).

5. Conclusion

The explicit expression is derived for the entropy of the ref-
erence system in the WCA approximation. On the basis of this
expression the straightforward calculation procedure for the WCA
thermodynamics is suggested. The usefulness of this procedure is
successfully shown on the example of liquid alkali metals.
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